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Main result

Theorem (Alan Dow, Y. T.)

The Čech-Stone remainder of the half line H has a family of
2c many mutually nonhomeomorphic subcontinua.

The rest of this talk will consist of an explanation of all the terms
and of a sketch of the proof.
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Čech-Stone

Čech-Stone compactification

Every completely regular space, X , has a compactification, βX ,
with the following characterizing property:

Every bounded continuous function f : X → R has a continuous
extension βf : βX → R.

Compactification: a compact Hausdorff space that contains (a
homeomorphic copy of) X as a dense subspace.
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Čech-Stone

Čech-Stone remainder

We call βX \ X the Čech-Stone remainder of X and denote it X ∗.

Some people say ‘growth’, that sounds more logical but . . .
since when do we give ideas logical names?
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The half line H

The half line H is the interval [0,∞) in R.

We study H∗ because R∗ is just the sum of two copies of H∗.

All you need to know about βH
As H is normal we have the following (again) characterizing
property of βH:
if F and G are closed and disjoint in H
then their closures in βH are disjoint.
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Crucial property

Very nice open sets

Let F and G be closed and disjoint in H∗.

There are two
sequences of open intervals,

〈
(an, bn) : n ∈ ω

〉
and〈

(cn, dn) : n ∈ ω
〉
, such that

bn < cn and dn < an+1 for all n (or the other way round);

F ⊆ Ex U and G ⊆ Ex V ,
where U =

⋃
n(an, bn) and V =

⋃
n(cn, dn).

Notation: Ex U = βH \ clβ(H \ U)
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Indication of proof

Take open sets OF and OG , in βH, around F and G respectively
with disjoint closures (βH is normal).

Assume inf OF < inf OG .

Let a0 = inf OF and b0 = sup{x ∈ OF : (a0, x) ∩ OG = ∅}.
Let c0 = inf{x ∈ OG : b0 < x} and
d0 = sup{x ∈ OG : (c0, x) ∩ OF = ∅}.
Let a1 = inf{x ∈ OF : d0 < x} and
b1 = sup{x ∈ OF : (a1, x) ∩ OG = ∅}.

Keep alternating
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About U and V

Note: cl U ∩ cl V = ∅, hence clβ Ex U ∩ clβ Ex V = ∅.

The sets of the form H∗ ∩Ex U form a base for the topology of H∗.

And dually: the sets of the form H∗ ∩ clβ
⋃

n[an, bn] form a base
for the closed sets of H∗.
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2c

Traditionally: c = |R| and so 2c is the cardinality of the power set
of R.

Well known: R has c many closed sets, hence H∗ has at most
2c many points (each point, x , is determined by {F : x ∈ clβ F}).

Also well known: H∗ contains ω∗ and ω∗ has 2c many points, so
H∗ has exactly 2c many points.
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Continuum

Easy: a continuum is a compact and connected Hausdorff space.

H∗ is a continuum:

H is connected, hence so is βH;

clβ[n,∞) is connected (for all n)

H∗ =
⋂

clβ[n,∞) is connected

Exercise: a decreasing sequence of compact connected sets has a
compact and connected intersection.
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Subcontinua of H∗

Take a sequence
〈
[an, bn] : n ∈ ω

〉
of closed intervals

(with bn < an+1 and limn an =∞).
Take x ∈ H∗.
Let u be the family of subsets, A, of ω that satisfy

x ∈ clβ
⋃
n∈A

[an, bn]

K. P. Hart Subcontinua of H∗



What does it all mean?
Standard subcontinua

Toward the main result

Subcontinua of H∗

Take a sequence
〈
[an, bn] : n ∈ ω

〉
of closed intervals

(with bn < an+1 and limn an =∞).

Take x ∈ H∗.
Let u be the family of subsets, A, of ω that satisfy

x ∈ clβ
⋃
n∈A

[an, bn]

K. P. Hart Subcontinua of H∗



What does it all mean?
Standard subcontinua

Toward the main result

Subcontinua of H∗

Take a sequence
〈
[an, bn] : n ∈ ω

〉
of closed intervals

(with bn < an+1 and limn an =∞).
Take x ∈ H∗.

Let u be the family of subsets, A, of ω that satisfy

x ∈ clβ
⋃
n∈A

[an, bn]

K. P. Hart Subcontinua of H∗



What does it all mean?
Standard subcontinua

Toward the main result

Subcontinua of H∗

Take a sequence
〈
[an, bn] : n ∈ ω

〉
of closed intervals

(with bn < an+1 and limn an =∞).
Take x ∈ H∗.
Let u be the family of subsets, A, of ω that satisfy

x ∈ clβ
⋃
n∈A

[an, bn]

K. P. Hart Subcontinua of H∗



What does it all mean?
Standard subcontinua

Toward the main result

Subcontinua of H∗

u is an ultrafilter

The intersection

[au, bu] =
⋂
A∈u

clβ
⋃
n∈A

[an, bn]

is (compact and) connected

It’s what we call a standard subcontinuum of H∗.

In fact . . .
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Subcontinua of H∗

. . . every subcontinuum is the intersection of standard
subcontinua.

Repeat previous arguments: if x /∈ K find a nice closed set,
F =

⋃
n[an, bn], such that K ⊆ clβ F and x /∈ clβ F .

As above, u =
{

A : K ⊆ clβ
⋃

n∈A[an, bn]
}

is an ultrafilter,
K ⊆ [au, bu], and x /∈ [au, bu]
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Indecomposability

Not too difficult: [au, bu] has empty interior in H∗.

Corollary: if K and L are two proper subcontinua of H∗ then
K ∪ L 6= H∗.

In other words: H∗ is an indecomposable continuum. (Bellamy,
Woods).
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Standard subcontinua of H∗

We need a model: every nice closed set looks like

M = ω × [0, 1]

its closure looks like βM
the projection π : M→ ω extends to βπ : βM→ βω

for u ∈ ω∗ the set [au, bu] looks like βπ←(u)

we write Iu for this preimage.
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Properties

The continuum Iu
is irreducible between 0u and 1u

contains the ultrapower (0, 1)ω/u as a subspace (with its
order topology)

is itself not linearly ordered

The points of (0, 1)ω/u are cut points of Iu but . . .
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Properties

. . . if 〈xn : n ∈ ω〉 is an increasing sequence of such cut points
then its ‘supremum’ is a non-trivial continuum.

More generally: if I is an initial segment of (0, 1)ω/u then sup I is
either a cut point or an indecomposable continuum
(so certainly the latter if I has countable cofinality).

We call such continua layers of Iu.
These layers will be important later on.
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Further properties

Let [cv , dv ] and [au, bu] be standard subcontinua

(given by sequences
〈
[cn, dn] : n ∈ ω

〉
and

〈
[an, bn] : n ∈ ω

〉
respectively).

Then [cv , dv ] ⊆ [au, bu] iff the (partial) function

ϕ =
{
〈m, n〉 : [cm, dm] ⊆ [an, bn]

}
satisfies ϕ(v) = u (so, implicitly, domϕ ∈ v and ranϕ ∈ u).
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Further properties

Two cases:

ϕ is one-to-one on some member of v , then [cv , dv ] is a
subinterval of [au, bu]

ϕ is one-to-one on no member of v , then [cv , dv ] is a subset
of some layer of [au, bu]
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Further properties

A technical result.

Lemma

Let K and L be two subcontinua of H∗ that intersect and such
that (at least) one of them is indecomposable.
Then K ⊆ L or L ⊆ K .

For the proof see the references at the end.
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CH fails

Theorem (Alan Dow, ¬CH)

There exists a family of 2c mutually non-homeomorphic standard
subcontinua.

Proof.

Based on a result of Shelah’s on the existence of a family of 2c

mutually non-isomorphic ultrapowers of (0, 1).
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CH holds

In this case all standard subcontinua are homeomorphic, so we
need an other idea.

We find 2c mutually non-homeomorphic indecomposable
subcontinua.

A byproduct of our construction is a family of 2c mutually
non-homeomorphic decomposable subcontinua.
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Standard subcontinua

Toward the main result

Main ingredient

Γ is the set of all sequences
〈
[an, bn] : n ∈ ω

〉
of closed intervals

,
with an, bn ∈ ω and an+1 = bn for all n.

Every sequence in Γ gives us a cover of H∗ by standard
subcontinua: the family

{
[au, bu] : u ∈ ω∗

}
.

If two of these standard subcontinua intersect then it is (only) in
the following situation: bu = av and v = u + 1. These cases will
not really be important in what follows.
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Notation

If A ∈ Γ, say A =
〈
[an, bn] : n ∈ ω

〉
, and u ∈ ω∗ then Au is the

standard subcontinuum from the cover that contains u.

For most of the A it is actually the case that u is in a layer L(A, u)
of Au; this happens if the map

{
〈m, n〉 : m ∈ [an, bn]

}
is

one-to-one on no member of u.

By our technical result the L(A, u) form a chain Cu; and this is
what we will use.
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Main technical result, from CH

Theorem

For every linearly ordered set T of size at most ℵ1

there are a
P-point u and a map t 7→ At from T to Γ such that
t 7→ L(At , u) is an embedding of T into Cu.
In addition: if T has no 〈ω, ω?〉-gaps then we can make sure that
I (T , u) = {L(At , u) : t ∈ T} is an interval in Cu.
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Mean linear orders

Let S and T be such that

|S |, |T | ≤ ℵ1
neither S nor T has an 〈ω, ω?〉-gap

both S and T have cofinality ω

These we call mean linear orders.
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Mean linear orders

Adjoin S as a maximum to S (and ditto for T ) and apply our main
technical result to the resulting ordered sets to get P-points u and
v , and the corresponding embeddings.

Let us consider the layers L(AS , u) and L(AT , v).
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Mean linear orders

Because of the interval property the indecomposable continuum
L(AS , u) is the closure of the Fσ-set

⋃
s∈S L(As , u) (and likewise

for T and v).

Let f : L(AS , u)→ L(AT , v) be a homeomorphism. Because the
L(At , u) are P-sets we must have L(At , u) ∩ f

[⋃
s∈S L(As , u)

]
6= ∅

for all t (and vice versa for the f
[
L(As , u)

]
and

⋃
t∈T L(At , v).

Use the early technical result to conclude that
f
[⋃

s∈S L(As , u)
]

=
⋃

t∈T L(At , v).
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It gets better

We even get, thanks to the interval property again, that the
relation {

〈s, t〉 : f
[
L(As , u)

]
= L(At , v)

is an isomorphism between final segments of S and T .
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Many mean linear orders

For a set, X , of limit ordinals in ω1 insert a decreasing ω-sequence
between α and α + 1 for all α ∈ X , to form LX , say.

Elementary: LX and LY are isomorphic iff X = Y .

TX = ω × LX , ordered lexicographically.

Elementary: TX and TY have isomorphic final segments iff X = Y .

By a happy coincidence ℵ1 = c, so we have 2c mean linear orders
without isomorphic final segments.
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Oh yes, and those decomposable continua?

In each case take, in the standard continuum AT , the closed
‘interval’ J(AT , u) from one end point to the layer L(AT , u).

A homeomorphism between J(AT , u) and J(AS , v) must map
L(AT , u) to L(AS , v), so there.
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Light reading

Website: fa.its.tudelft.nl/~hart
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On subcontinua and continuous images of βR \ R,
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