Subcontinua of \mathbb{H}^*

Quidquid latine dictum sit, altum videtur

K. P. Hart

Faculty EEMCS TU Delft

Hejnice, 31. Leden, 2014: 17:45 - 18:30

Main result

Theorem (Alan Dow, Y. T.)

The Čech-Stone remainder of the half line \mathbb{H} has a family of $2^{\mathfrak{c}}$ many mutually nonhomeomorphic subcontinua.

Main result

Theorem (Alan Dow, Y. T.)

The Čech-Stone remainder of the half line \mathbb{H} has a family of $2^{\mathfrak{c}}$ many mutually nonhomeomorphic subcontinua.

The rest of this talk will consist of an explanation of all the terms and of a sketch of the proof.

What does it all mean? Standard subcontinua

Outline

2 Standard subcontinua

3 Toward the main result

白 と く ヨ と く

Čech-Stone compactification

Every completely regular space, X, has a compactification, βX , with the following characterizing property:

Čech-Stone compactification

Every completely regular space, X, has a compactification, βX , with the following characterizing property: Every *bounded* continuous function $f : X \to \mathbb{R}$ has a continuous extension $\beta f : \beta X \to \mathbb{R}$.

Čech-Stone compactification

Every completely regular space, X, has a compactification, βX , with the following characterizing property: Every *bounded* continuous function $f : X \to \mathbb{R}$ has a continuous extension $\beta f : \beta X \to \mathbb{R}$.

Compactification: a compact Hausdorff space that contains (a homeomorphic copy of) X as a dense subspace.

Čech-Stone remainder

We call $\beta X \setminus X$ the Čech-Stone remainder of X and denote it X^* .

Čech-Stone remainder

We call $\beta X \setminus X$ the Čech-Stone remainder of X and denote it X^* .

Some people say 'growth', that sounds more logical but

Čech-Stone remainder

We call $\beta X \setminus X$ the Čech-Stone remainder of X and denote it X^* .

Some people say 'growth', that sounds more logical but ... since when do we give ideas logical names?

The half line $\mathbb H$

The half line \mathbb{H} is the interval $[0,\infty)$ in \mathbb{R} .

The half line $\mathbb H$

The half line \mathbb{H} is the interval $[0, \infty)$ in \mathbb{R} . We study \mathbb{H}^* because \mathbb{R}^* is just the sum of two copies of \mathbb{H}^* .

The half line $\mathbb H$

The half line \mathbb{H} is the interval $[0, \infty)$ in \mathbb{R} . We study \mathbb{H}^* because \mathbb{R}^* is just the sum of two copies of \mathbb{H}^* .

All you need to know about $\beta \mathbb{H}$

As $\mathbb H$ is normal we have the following (again) characterizing property of $\beta\mathbb H$:

The half line $\mathbb H$

The half line \mathbb{H} is the interval $[0, \infty)$ in \mathbb{R} . We study \mathbb{H}^* because \mathbb{R}^* is just the sum of two copies of \mathbb{H}^* .

All you need to know about $\beta \mathbb{H}$

As \mathbb{H} is normal we have the following (again) characterizing property of $\beta \mathbb{H}$: if *F* and *G* are closed and disjoint in \mathbb{H}

The half line $\mathbb H$

The half line \mathbb{H} is the interval $[0, \infty)$ in \mathbb{R} . We study \mathbb{H}^* because \mathbb{R}^* is just the sum of two copies of \mathbb{H}^* .

All you need to know about $\beta \mathbb{H}$

As \mathbb{H} is normal we have the following (again) characterizing property of $\beta \mathbb{H}$: if *F* and *G* are closed and disjoint in \mathbb{H} then their closures in $\beta \mathbb{H}$ are disjoint.

Crucial property

Very nice open sets

Let F and G be closed and disjoint in \mathbb{H}^* .

Crucial property

Very nice open sets

Let *F* and *G* be closed and disjoint in \mathbb{H}^* . There are two sequences of open intervals, $\langle (a_n, b_n) : n \in \omega \rangle$ and $\langle (c_n, d_n) : n \in \omega \rangle$, such that

Crucial property

Very nice open sets

Let F and G be closed and disjoint in \mathbb{H}^* . There are two sequences of open intervals, $\langle (a_n, b_n) : n \in \omega \rangle$ and $\langle (c_n, d_n) : n \in \omega \rangle$, such that

• $b_n < c_n$ and $d_n < a_{n+1}$ for all n

Crucial property

Very nice open sets

Let F and G be closed and disjoint in \mathbb{H}^* . There are two sequences of open intervals, $\langle (a_n, b_n) : n \in \omega \rangle$ and $\langle (c_n, d_n) : n \in \omega \rangle$, such that

• $b_n < c_n$ and $d_n < a_{n+1}$ for all n (or the other way round);

Crucial property

Very nice open sets

Let F and G be closed and disjoint in \mathbb{H}^* . There are two sequences of open intervals, $\langle (a_n, b_n) : n \in \omega \rangle$ and $\langle (c_n, d_n) : n \in \omega \rangle$, such that

- $b_n < c_n$ and $d_n < a_{n+1}$ for all n (or the other way round);
- $F \subseteq \operatorname{Ex} U$ and $G \subseteq \operatorname{Ex} V$,

Crucial property

Very nice open sets

Let F and G be closed and disjoint in \mathbb{H}^* . There are two sequences of open intervals, $\langle (a_n, b_n) : n \in \omega \rangle$ and $\langle (c_n, d_n) : n \in \omega \rangle$, such that

• $b_n < c_n$ and $d_n < a_{n+1}$ for all n (or the other way round);

•
$$F \subseteq \operatorname{Ex} U$$
 and $G \subseteq \operatorname{Ex} V$,
where $U = \bigcup_n (a_n, b_n)$ and $V = \bigcup_n (c_n, d_n)$.

Crucial property

Very nice open sets

Let F and G be closed and disjoint in \mathbb{H}^* . There are two sequences of open intervals, $\langle (a_n, b_n) : n \in \omega \rangle$ and $\langle (c_n, d_n) : n \in \omega \rangle$, such that

• $b_n < c_n$ and $d_n < a_{n+1}$ for all n (or the other way round);

•
$$F \subseteq \operatorname{Ex} U$$
 and $G \subseteq \operatorname{Ex} V$,
where $U = \bigcup_n (a_n, b_n)$ and $V = \bigcup_n (c_n, d_n)$.

Notation: Ex $U = \beta \mathbb{H} \setminus cl_{\beta}(\mathbb{H} \setminus U)$

Indication of proof

Take open sets O_F and O_G , in $\beta \mathbb{H}$, around F and G respectively with disjoint closures ($\beta \mathbb{H}$ is normal).

Indication of proof

Take open sets O_F and O_G , in $\beta \mathbb{H}$, around F and G respectively with disjoint closures ($\beta \mathbb{H}$ is normal).

Assume inf $O_F < \inf O_G$.

Take open sets O_F and O_G , in $\beta \mathbb{H}$, around F and G respectively with disjoint closures ($\beta \mathbb{H}$ is normal).

Assume $\inf O_F < \inf O_G$.

• Let
$$a_0 = \inf O_F$$
 and $b_0 = \sup\{x \in O_F : (a_0, x) \cap O_G = \emptyset\}$.

Take open sets O_F and O_G , in $\beta \mathbb{H}$, around F and G respectively with disjoint closures ($\beta \mathbb{H}$ is normal).

Assume $\inf O_F < \inf O_G$.

• Let $a_0 = \inf O_F$ and $b_0 = \sup\{x \in O_F : (a_0, x) \cap O_G = \emptyset\}$.

• Let
$$c_0 = \inf\{x \in O_G : b_0 < x\}$$
 and
 $d_0 = \sup\{x \in O_G : (c_0, x) \cap O_F = \emptyset\}.$

Take open sets O_F and O_G , in $\beta \mathbb{H}$, around F and G respectively with disjoint closures ($\beta \mathbb{H}$ is normal).

Assume $\inf O_F < \inf O_G$.

• Let $a_0 = \inf O_F$ and $b_0 = \sup\{x \in O_F : (a_0, x) \cap O_G = \emptyset\}$.

• Let
$$c_0 = \inf\{x \in O_G : b_0 < x\}$$
 and
 $d_0 = \sup\{x \in O_G : (c_0, x) \cap O_F = \emptyset\}$.

• Let
$$a_1 = \inf\{x \in O_F : d_0 < x\}$$
 and
 $b_1 = \sup\{x \in O_F : (a_1, x) \cap O_G = \emptyset\}.$

Take open sets O_F and O_G , in $\beta \mathbb{H}$, around F and G respectively with disjoint closures ($\beta \mathbb{H}$ is normal).

Assume $\inf O_F < \inf O_G$.

• Let $a_0 = \inf O_F$ and $b_0 = \sup\{x \in O_F : (a_0, x) \cap O_G = \emptyset\}$.

• Let
$$c_0 = \inf\{x \in O_G : b_0 < x\}$$
 and
 $d_0 = \sup\{x \in O_G : (c_0, x) \cap O_F = \emptyset\}$

• Let
$$a_1 = \inf\{x \in O_F : d_0 < x\}$$
 and
 $b_1 = \sup\{x \in O_F : (a_1, x) \cap O_G = \emptyset\}.$

Keep alternating

About U and V

Note: cl $U \cap$ cl $V = \emptyset$, hence cl_{β} Ex $U \cap$ cl_{β} Ex $V = \emptyset$.

About U and V

Note: cl $U \cap$ cl $V = \emptyset$, hence cl_{β} Ex $U \cap$ cl_{β} Ex $V = \emptyset$.

The sets of the form $\mathbb{H}^* \cap \mathsf{Ex} U$ form a base for the topology of \mathbb{H}^* .

About U and V

Note: cl $U \cap$ cl $V = \emptyset$, hence cl_{β} Ex $U \cap$ cl_{β} Ex $V = \emptyset$.

The sets of the form $\mathbb{H}^* \cap \mathsf{Ex} U$ form a base for the topology of \mathbb{H}^* .

And dually: the sets of the form $\mathbb{H}^* \cap cl_\beta \bigcup_n [a_n, b_n]$ form a base for the closed sets of \mathbb{H}^* .

Traditionally: $\mathfrak{c}=|\mathbb{R}|$ and so $2^{\mathfrak{c}}$ is the cardinality of the power set of $\mathbb{R}.$

Traditionally: $\mathfrak{c}=|\mathbb{R}|$ and so $2^\mathfrak{c}$ is the cardinality of the power set of $\mathbb{R}.$

Well known: \mathbb{R} has \mathfrak{c} many closed sets, hence \mathbb{H}^* has at most $2^{\mathfrak{c}}$ many points (each point, x, is determined by $\{F : x \in \mathsf{cl}_\beta F\}$).

Traditionally: $\mathfrak{c}=|\mathbb{R}|$ and so $2^{\mathfrak{c}}$ is the cardinality of the power set of $\mathbb{R}.$

Well known: \mathbb{R} has \mathfrak{c} many closed sets, hence \mathbb{H}^* has at most $2^{\mathfrak{c}}$ many points (each point, x, is determined by $\{F : x \in \mathsf{cl}_\beta F\}$).

Also well known: \mathbb{H}^* contains ω^* and ω^* has 2^c many points, so \mathbb{H}^* has exactly 2^c many points.

Continuum

Easy: a continuum is a compact and connected Hausdorff space.

Continuum

Easy: a continuum is a compact and connected Hausdorff space.

 \mathbb{H}^* is a continuum:

Continuum

Easy: a continuum is a compact and connected Hausdorff space.

 \mathbb{H}^* is a continuum:

• \mathbb{H} is connected, hence so is $\beta \mathbb{H}$;

Continuum

Easy: a continuum is a compact and connected Hausdorff space.

 \mathbb{H}^* is a continuum:

- \mathbb{H} is connected, hence so is $\beta \mathbb{H}$;
- $cl_{\beta}[n,\infty)$ is connected (for all n)

Continuum

Easy: a continuum is a compact and connected Hausdorff space.

\mathbb{H}^* is a continuum:

- \mathbb{H} is connected, hence so is $\beta \mathbb{H}$;
- $\mathsf{cl}_\beta[n,\infty)$ is connected (for all n)
- $\mathbb{H}^* = \bigcap \mathsf{cl}_\beta[n,\infty)$ is connected

Continuum

Easy: a continuum is a compact and connected Hausdorff space.

\mathbb{H}^* is a continuum:

- \mathbb{H} is connected, hence so is $\beta \mathbb{H}$;
- $cl_{\beta}[n,\infty)$ is connected (for all n)
- $\mathbb{H}^* = \bigcap \mathsf{cl}_\beta[n,\infty)$ is connected

Exercise: a decreasing sequence of compact connected sets has a compact and connected intersection.

TUDelft Delft University of Technology

Subcontinua of \mathbb{H}^*

Take a sequence $\langle [a_n, b_n] : n \in \omega \rangle$ of closed intervals

K. P. Hart Subcontinua of \mathbb{H}^*

Subcontinua of \mathbb{H}^*

Take a sequence $\langle [a_n, b_n] : n \in \omega \rangle$ of closed intervals (with $b_n < a_{n+1}$ and $\lim_n a_n = \infty$).

Subcontinua of \mathbb{H}^*

Take a sequence $\langle [a_n, b_n] : n \in \omega \rangle$ of closed intervals (with $b_n < a_{n+1}$ and $\lim_n a_n = \infty$). Take $x \in \mathbb{H}^*$.

Subcontinua of \mathbb{H}^*

Take a sequence $\langle [a_n, b_n] : n \in \omega \rangle$ of closed intervals (with $b_n < a_{n+1}$ and $\lim_n a_n = \infty$). Take $x \in \mathbb{H}^*$. Let u be the family of subsets, A, of ω that satisfy

$$x \in \mathsf{cl}_{\beta} \bigcup_{n \in A} [a_n, b_n]$$

Subcontinua of \mathbb{H}^*

u is an ultrafilter

Subcontinua of \mathbb{H}^*

u is an ultrafilter

The intersection

$$[a_u, b_u] = \bigcap_{A \in u} \operatorname{cl}_\beta \bigcup_{n \in A} [a_n, b_n]$$

is (compact and) connected

Subcontinua of \mathbb{H}^*

u is an ultrafilter

The intersection

$$[a_u, b_u] = \bigcap_{A \in u} \operatorname{cl}_\beta \bigcup_{n \in A} [a_n, b_n]$$

is (compact and) connected

It's what we call a standard subcontinuum of $\mathbb{H}^*.$

Subcontinua of \mathbb{H}^*

u is an ultrafilter

The intersection

$$[a_u, b_u] = \bigcap_{A \in u} \operatorname{cl}_\beta \bigcup_{n \in A} [a_n, b_n]$$

is (compact and) connected

It's what we call a standard subcontinuum of \mathbb{H}^* . In fact ...

Subcontinua of \mathbb{H}^*

... every subcontinuum is the intersection of standard subcontinua.

Subcontinua of \mathbb{H}^*

... every subcontinuum is the intersection of standard subcontinua.

Repeat previous arguments:

Subcontinua of \mathbb{H}^*

... every subcontinuum is the intersection of standard subcontinua.

Repeat previous arguments: if $x \notin K$ find a nice closed set, $F = \bigcup_n [a_n, b_n]$, such that $K \subseteq cl_\beta F$ and $x \notin cl_\beta F$.

Subcontinua of \mathbb{H}^*

... every subcontinuum is the intersection of standard subcontinua.

Repeat previous arguments: if $x \notin K$ find a nice closed set, $F = \bigcup_n [a_n, b_n]$, such that $K \subseteq cl_\beta F$ and $x \notin cl_\beta F$.

As above, $u = \left\{ A : K \subseteq \mathsf{cl}_{eta} \bigcup_{n \in \mathcal{A}} [a_n, b_n] \right\}$ is an ultrafilter

Subcontinua of \mathbb{H}^*

... every subcontinuum is the intersection of standard subcontinua.

Repeat previous arguments: if $x \notin K$ find a nice closed set, $F = \bigcup_n [a_n, b_n]$, such that $K \subseteq \operatorname{cl}_\beta F$ and $x \notin \operatorname{cl}_\beta F$.

As above, $u = \{A : K \subseteq cl_{\beta} \bigcup_{n \in A} [a_n, b_n]\}$ is an ultrafilter, $K \subseteq [a_u, b_u]$

Subcontinua of \mathbb{H}^*

... every subcontinuum is the intersection of standard subcontinua.

Repeat previous arguments: if $x \notin K$ find a nice closed set, $F = \bigcup_n [a_n, b_n]$, such that $K \subseteq \operatorname{cl}_\beta F$ and $x \notin \operatorname{cl}_\beta F$.

As above, $u = \{A : K \subseteq cl_{\beta} \bigcup_{n \in A} [a_n, b_n]\}$ is an ultrafilter, $K \subseteq [a_u, b_u]$, and $x \notin [a_u, b_u]$

Indecomposability

Not too difficult: $[a_u, b_u]$ has empty interior in \mathbb{H}^* .

Indecomposability

Not too difficult: $[a_u, b_u]$ has empty interior in \mathbb{H}^* .

Corollary: if K and L are two *proper* subcontinua of \mathbb{H}^* then $K \cup L \neq \mathbb{H}^*$.

Indecomposability

Not too difficult: $[a_u, b_u]$ has empty interior in \mathbb{H}^* .

Corollary: if K and L are two *proper* subcontinua of \mathbb{H}^* then $K \cup L \neq \mathbb{H}^*$.

In other words: \mathbb{H}^* is an indecomposable continuum. (Bellamy, Woods).

Outline

Standard subcontinua of \mathbb{H}^*

We need a model: every nice closed set looks like

$\mathbb{M}=\omega\times [0,1]$

Standard subcontinua of \mathbb{H}^*

We need a model: every nice closed set looks like

 $\mathbb{M}=\omega\times [0,1]$

• its closure looks like $\beta \mathbb{M}$

Standard subcontinua of \mathbb{H}^*

We need a model: every nice closed set looks like

$$\mathbb{M} = \omega \times [0, 1]$$

- its closure looks like $\beta \mathbb{M}$
- the projection $\pi: \mathbb{M} \to \omega$ extends to $\beta \pi: \beta \mathbb{M} \to \beta \omega$

Standard subcontinua of \mathbb{H}^*

We need a model: every nice closed set looks like

$$\mathbb{M} = \omega \times [0, 1]$$

- its closure looks like $\beta \mathbb{M}$
- the projection $\pi: \mathbb{M} \to \omega$ extends to $\beta \pi: \beta \mathbb{M} \to \beta \omega$
- for $u \in \omega^*$ the set $[a_u, b_u]$ looks like $\beta \pi^{\leftarrow}(u)$

Standard subcontinua of \mathbb{H}^*

We need a model: every nice closed set looks like

$$\mathbb{M} = \omega \times [0, 1]$$

- its closure looks like $\beta \mathbb{M}$
- the projection $\pi: \mathbb{M} \to \omega$ extends to $\beta \pi: \beta \mathbb{M} \to \beta \omega$
- for $u \in \omega^*$ the set $[a_u, b_u]$ looks like $\beta \pi^{\leftarrow}(u)$
- we write I_u for this preimage.

Properties

The continuum \mathbb{I}_u

• is irreducible between 0_u and 1_u

Properties

The continuum \mathbb{I}_u

- is irreducible between 0_u and 1_u
- contains the ultrapower $(0,1)^{\omega}/u$ as a subspace (with its order topology)

Properties

The continuum \mathbb{I}_u

- is irreducible between 0_u and 1_u
- contains the ultrapower $(0,1)^{\omega}/u$ as a subspace (with its order topology)
- is itself not linearly ordered

The continuum \mathbb{I}_u

- is irreducible between 0_u and 1_u
- contains the ultrapower $(0,1)^{\omega}/u$ as a subspace (with its order topology)
- is itself not linearly ordered

The points of $(0,1)^{\omega}/u$ are cut points of \mathbb{I}_u but ...

Properties

... if $\langle x_n : n \in \omega \rangle$ is an increasing sequence of such cut points then its 'supremum' is a non-trivial continuum.

... if $\langle x_n : n \in \omega \rangle$ is an increasing sequence of such cut points then its 'supremum' is a non-trivial continuum.

More generally: if I is an initial segment of $(0,1)^{\omega}/u$ then sup I is either a cut point or an indecomposable continuum

... if $\langle x_n : n \in \omega \rangle$ is an increasing sequence of such cut points then its 'supremum' is a non-trivial continuum.

More generally: if I is an initial segment of $(0,1)^{\omega}/u$ then sup I is either a cut point or an indecomposable continuum (so certainly the latter if I has countable cofinality).

... if $\langle x_n : n \in \omega \rangle$ is an increasing sequence of such cut points then its 'supremum' is a non-trivial continuum.

More generally: if I is an initial segment of $(0, 1)^{\omega}/u$ then $\sup I$ is either a cut point or an indecomposable continuum (so certainly the latter if I has countable cofinality).

We call such continua *layers* of \mathbb{I}_u .

Properties

... if $\langle x_n : n \in \omega \rangle$ is an increasing sequence of such cut points then its 'supremum' is a non-trivial continuum.

More generally: if I is an initial segment of $(0, 1)^{\omega}/u$ then $\sup I$ is either a cut point or an indecomposable continuum (so certainly the latter if I has countable cofinality).

We call such continua *layers* of \mathbb{I}_u . These layers will be important later on.

> **TU**Delft Delft University of Technology

Further properties

Let $[c_v, d_v]$ and $[a_u, b_u]$ be standard subcontinua

Further properties

Let $[c_v, d_v]$ and $[a_u, b_u]$ be standard subcontinua (given by sequences $\langle [c_n, d_n] : n \in \omega \rangle$ and $\langle [a_n, b_n] : n \in \omega \rangle$ respectively).

Further properties

Let $[c_v, d_v]$ and $[a_u, b_u]$ be standard subcontinua (given by sequences $\langle [c_n, d_n] : n \in \omega \rangle$ and $\langle [a_n, b_n] : n \in \omega \rangle$ respectively).

Then $[c_v, d_v] \subseteq [a_u, b_u]$ iff

Further properties

Let $[c_v, d_v]$ and $[a_u, b_u]$ be standard subcontinua (given by sequences $\langle [c_n, d_n] : n \in \omega \rangle$ and $\langle [a_n, b_n] : n \in \omega \rangle$ respectively).

Then $[c_v, d_v] \subseteq [a_u, b_u]$ iff the (partial) function

$$\varphi = \big\{ \langle m, n \rangle : [c_m, d_m] \subseteq [a_n, b_n] \big\}$$

satisfies $\varphi(v) = u$

Further properties

Let $[c_v, d_v]$ and $[a_u, b_u]$ be standard subcontinua (given by sequences $\langle [c_n, d_n] : n \in \omega \rangle$ and $\langle [a_n, b_n] : n \in \omega \rangle$ respectively).

Then $[c_v, d_v] \subseteq [a_u, b_u]$ iff the (partial) function

$$\varphi = \big\{ \langle m, n \rangle : [c_m, d_m] \subseteq [a_n, b_n] \big\}$$

satisfies $\varphi(v) = u$ (so, implicitly, dom $\varphi \in v$ and ran $\varphi \in u$).

Further properties

Two cases:

φ is one-to-one on some member of v, then [c_v, d_v] is a subinterval of [a_u, b_u]

Further properties

Two cases:

- φ is one-to-one on some member of v, then [c_v, d_v] is a subinterval of [a_u, b_u]
- φ is one-to-one on no member of v, then [c_v, d_v] is a subset of some layer of [a_u, b_u]

Further properties

A technical result.

Further properties

A technical result.

Lemma

Let K and L be two subcontinua of \mathbb{H}^* that intersect and such that (at least) one of them is indecomposable.

Further properties

A technical result.

Lemma

Let K and L be two subcontinua of \mathbb{H}^* that intersect and such that (at least) one of them is indecomposable. Then $K \subseteq L$ or $L \subseteq K$.

Further properties

A technical result.

Lemma

Let K and L be two subcontinua of \mathbb{H}^* that intersect and such that (at least) one of them is indecomposable. Then $K \subseteq L$ or $L \subseteq K$.

For the proof see the references at the end.

Outline

2 Standard subcontinua

CH fails

Theorem (Alan Dow, $\neg CH$)

There exists a family of 2^c mutually non-homeomorphic standard subcontinua.

CH fails

Theorem (Alan Dow, $\neg CH$)

There exists a family of 2^c mutually non-homeomorphic standard subcontinua.

Proof.

Based on a result of Shelah's on the existence of a family of 2^{c} mutually non-isomorphic ultrapowers of (0, 1).

CH holds

In this case all standard subcontinua are homeomorphic, so we need an other idea.

CH holds

In this case all standard subcontinua are homeomorphic, so we need an other idea.

We find 2^c mutually non-homeomorphic indecomposable subcontinua.

CH holds

In this case all standard subcontinua are homeomorphic, so we need an other idea.

We find 2^c mutually non-homeomorphic indecomposable subcontinua.

A byproduct of our construction is a family of 2^c mutually non-homeomorphic decomposable subcontinua.

Main ingredient

 ${\sf \Gamma}$ is the set of all sequences $\left< [a_n, b_n] : n \in \omega \right>$ of closed intervals

Main ingredient

 Γ is the set of all sequences $\langle [a_n, b_n] : n \in \omega \rangle$ of closed intervals, with $a_n, b_n \in \omega$ and $a_{n+1} = b_n$ for all n.

Main ingredient

 Γ is the set of all sequences $\langle [a_n, b_n] : n \in \omega \rangle$ of closed intervals, with $a_n, b_n \in \omega$ and $a_{n+1} = b_n$ for all n.

Every sequence in Γ gives us a cover of \mathbb{H}^* by standard subcontinua: the family $\{[a_u, b_u] : u \in \omega^*\}$.

Main ingredient

 Γ is the set of all sequences $\langle [a_n, b_n] : n \in \omega \rangle$ of closed intervals, with $a_n, b_n \in \omega$ and $a_{n+1} = b_n$ for all n.

Every sequence in Γ gives us a cover of \mathbb{H}^* by standard subcontinua: the family $\{[a_u, b_u] : u \in \omega^*\}$.

If two of these standard subcontinua intersect then it is (only) in the following situation: $b_u = a_v$ and v = u + 1.

Main ingredient

 Γ is the set of all sequences $\langle [a_n, b_n] : n \in \omega \rangle$ of closed intervals, with $a_n, b_n \in \omega$ and $a_{n+1} = b_n$ for all n.

Every sequence in Γ gives us a cover of \mathbb{H}^* by standard subcontinua: the family $\{[a_u, b_u] : u \in \omega^*\}$.

If two of these standard subcontinua intersect then it is (only) in the following situation: $b_u = a_v$ and v = u + 1. These cases will not really be important in what follows.

TUDelft Delft University of Technology

Notation

If $A \in \Gamma$, say $A = \langle [a_n, b_n] : n \in \omega \rangle$, and $u \in \omega^*$ then A_u is the standard subcontinuum from the cover that contains u.

Notation

If $A \in \Gamma$, say $A = \langle [a_n, b_n] : n \in \omega \rangle$, and $u \in \omega^*$ then A_u is the standard subcontinuum from the cover that contains u.

For most of the A it is actually the case that u is in a layer L(A, u) of A_u ; this happens if the map $\{\langle m, n \rangle : m \in [a_n, b_n]\}$ is one-to-one on no member of u.

Notation

If $A \in \Gamma$, say $A = \langle [a_n, b_n] : n \in \omega \rangle$, and $u \in \omega^*$ then A_u is the standard subcontinuum from the cover that contains u.

For most of the A it is actually the case that u is in a layer L(A, u) of A_u ; this happens if the map $\{\langle m, n \rangle : m \in [a_n, b_n]\}$ is one-to-one on no member of u.

By our technical result the L(A, u) form a chain C_u

Notation

If $A \in \Gamma$, say $A = \langle [a_n, b_n] : n \in \omega \rangle$, and $u \in \omega^*$ then A_u is the standard subcontinuum from the cover that contains u.

For most of the A it is actually the case that u is in a layer L(A, u) of A_u ; this happens if the map $\{\langle m, n \rangle : m \in [a_n, b_n]\}$ is one-to-one on no member of u.

By our technical result the L(A, u) form a chain C_u ; and this is what we will use.

Main technical result, from CH

Theorem

For every linearly ordered set T of size at most \aleph_1

Main technical result, from CH

Theorem

For every linearly ordered set T of size at most \aleph_1 there are a P-point u and a map $t \mapsto A_t$ from T to Γ such that

Main technical result, from CH

Theorem

For every linearly ordered set T of size at most \aleph_1 there are a P-point u and a map $t \mapsto A_t$ from T to Γ such that $t \mapsto L(A_t, u)$ is an embedding of T into C_u .

Main technical result, from CH

Theorem

For every linearly ordered set T of size at most \aleph_1 there are a P-point u and a map $t \mapsto A_t$ from T to Γ such that $t \mapsto L(A_t, u)$ is an embedding of T into C_u . In addition: if T has no $\langle \omega, \omega^* \rangle$ -gaps then we can make sure that $I(T, u) = \{L(A_t, u) : t \in T\}$ is an interval in C_u .

Mean linear orders

Let S and T be such that

Mean linear orders

Let S and T be such that

• $|S|, |T| \leq \aleph_1$

Mean linear orders

Let S and T be such that

- $|S|, |T| \leq \aleph_1$
- neither S nor T has an $\langle \omega, \omega^\star \rangle\text{-gap}$

Mean linear orders

Let S and T be such that

- $|S|, |T| \leq \aleph_1$
- neither S nor T has an $\langle \omega, \omega^{\star} \rangle$ -gap
- both S and T have cofinality ω

Mean linear orders

Let S and T be such that

- $|S|, |T| \leq \aleph_1$
- neither S nor T has an $\langle \omega, \omega^{\star} \rangle$ -gap
- both S and T have cofinality ω

These we call mean linear orders.

Mean linear orders

Adjoin S as a maximum to S (and ditto for T) and apply our main technical result to the resulting ordered sets to get P-points u and v, and the corresponding embeddings.

Mean linear orders

Adjoin S as a maximum to S (and ditto for T) and apply our main technical result to the resulting ordered sets to get P-points u and v, and the corresponding embeddings. Let us consider the layers $L(A_S, u)$ and $L(A_T, v)$.

Mean linear orders

Because of the interval property the indecomposable continuum $L(A_S, u)$ is the closure of the F_{σ} -set $\bigcup_{s \in S} L(A_s, u)$ (and likewise for T and v).

Mean linear orders

Because of the interval property the indecomposable continuum $L(A_S, u)$ is the closure of the F_{σ} -set $\bigcup_{s \in S} L(A_s, u)$ (and likewise for T and v).

Let $f : L(A_S, u) \to L(A_T, v)$ be a homeomorphism. Because the $L(A_t, u)$ are *P*-sets we must have $L(A_t, u) \cap f[\bigcup_{s \in S} L(A_s, u)] \neq \emptyset$ for all *t* (and vice versa for the $f[L(A_s, u)]$ and $\bigcup_{t \in T} L(A_t, v)$.

Mean linear orders

Because of the interval property the indecomposable continuum $L(A_S, u)$ is the closure of the F_{σ} -set $\bigcup_{s \in S} L(A_s, u)$ (and likewise for T and v).

Let $f : L(A_S, u) \to L(A_T, v)$ be a homeomorphism. Because the $L(A_t, u)$ are *P*-sets we must have $L(A_t, u) \cap f[\bigcup_{s \in S} L(A_s, u)] \neq \emptyset$ for all *t* (and vice versa for the $f[L(A_s, u)]$ and $\bigcup_{t \in T} L(A_t, v)$.

Use the early technical result to conclude that $f[\bigcup_{s\in S} L(A_s, u)] = \bigcup_{t\in T} L(A_t, v).$

TUDelft Delft University of Technology

It gets better

We even get, thanks to the interval property again, that the relation $% \left({{{\mathbf{r}}_{\mathbf{r}}}_{\mathbf{r}}} \right)$

$$\{\langle s,t\rangle:f[L(A_s,u)]=L(A_t,v)\}$$

It gets better

We even get, thanks to the interval property again, that the relation

$$\{\langle s,t\rangle:f[L(A_s,u)]=L(A_t,v)$$

is an isomorphism between final segments of S and T.

Many mean linear orders

For a set, X, of limit ordinals in ω_1 insert a decreasing ω -sequence between α and $\alpha + 1$ for all $\alpha \in X$, to form L_X , say.

For a set, X, of limit ordinals in ω_1 insert a decreasing ω -sequence between α and $\alpha + 1$ for all $\alpha \in X$, to form L_X , say.

Elementary: L_X and L_Y are isomorphic iff X = Y.

For a set, X, of limit ordinals in ω_1 insert a decreasing ω -sequence between α and $\alpha + 1$ for all $\alpha \in X$, to form L_X , say.

Elementary: L_X and L_Y are isomorphic iff X = Y.

 $T_X = \omega \times L_X$, ordered lexicographically.

For a set, X, of limit ordinals in ω_1 insert a decreasing ω -sequence between α and $\alpha + 1$ for all $\alpha \in X$, to form L_X , say.

Elementary: L_X and L_Y are isomorphic iff X = Y.

 $T_X = \omega \times L_X$, ordered lexicographically.

Elementary: T_X and T_Y have isomorphic final segments iff X = Y.

For a set, X, of limit ordinals in ω_1 insert a decreasing ω -sequence between α and $\alpha + 1$ for all $\alpha \in X$, to form L_X , say.

Elementary: L_X and L_Y are isomorphic iff X = Y.

 $T_X = \omega \times L_X$, ordered lexicographically.

Elementary: T_X and T_Y have isomorphic final segments iff X = Y.

By a happy coincidence $\aleph_1 = \mathfrak{c}$, so we have $2^{\mathfrak{c}}$ mean linear orders without isomorphic final segments.

Oh yes, and those decomposable continua?

In each case take, in the standard continuum A_T , the closed 'interval' $J(A_T, u)$ from one end point to the layer $L(A_T, u)$.

Oh yes, and those decomposable continua?

In each case take, in the standard continuum A_T , the closed 'interval' $J(A_T, u)$ from one end point to the layer $L(A_T, u)$.

A homeomorphism between $J(A_T, u)$ and $J(A_S, v)$ must map $L(A_T, u)$ to $L(A_S, v)$

Oh yes, and those decomposable continua?

In each case take, in the standard continuum A_T , the closed 'interval' $J(A_T, u)$ from one end point to the layer $L(A_T, u)$.

A homeomorphism between $J(A_T, u)$ and $J(A_S, v)$ must map $L(A_T, u)$ to $L(A_S, v)$, so there.

Light reading

Website: fa.its.tudelft.nl/~hart

Alan Dow,

Some set-theory, Stone-Čech, and F-spaces, Topology and Applications, **158** (2011), 1749–1755.

Alan Dow and Klaas Pieter Hart,

On subcontinua and continuous images of $\beta \mathbb{R} \setminus \mathbb{R}$, http://arxiv.org/abs/1401.3132.

Klaas Pieter Hart,

The Čech-Stone compactification of the Real Line, In Recent progress in general topology (1992), 317–352.

